Landfill Gas Generation at Open Dump Landfills in Developing Countries

James Peck, P.E. Vice President of Engineering Hydro Geo Chem, Inc.

10th Annual Landfill Methane Outreach Program Conference and Project Expo, January 23-24, 2007

Background Information

Global Methane Emissions from Solid Waste Disposal Facilities

	Emissions		Ibs CO ₂ eq/			
Country	(MtCO ₂ eq)	Population	person			
United States	130.6	298,444,215	875			
China	46	1,313,973,713	70			
Mexico	33.3	107,449,525	620			
Canada	25.3	33,098,932	1,529			
Russian Federation	34.2	142,893,540	479			
Saudi Arabia	19.4	27,019,731	1,436			
India	15.9	1,095,351,995	29			
Brazil	16.6	188,078,227	177			
Ukraine	13.4	46,710,816	574			
Poland	17.1	38,536,869	887			
South Africa	16.8	44,187,637	760			
Turkey	10.4	70,413,958	295			
Israel	9.7	6,199,008	3,130			
Australia	8.7	20,264,082	859			
Dem. Rep. of Congo	7.4	62,660,551	236			
Rest of the World	342.7	3,029,887,465	226			
World Total	747.5	6,525,170,264	229			
Emissions in million tons of 0						
Base Year 2005						
Emissions data from EPA, 2006 "Global Mitigation of Non-CO ₂ Greenhouse Gases"						

Factors Influencing Methane Generation at Landfills

- Population
- Quantity of waste disposed per capita
- Composition of waste
- Type of waste disposal site

Characterizing Waste Disposal Sites

Types of Waste Disposal Sites

- Sanitary landfills
- Open dumps
- Managed dumps

Landfill type is depends on the operational controls at the site. The major issue for gas generation is the <u>oxidation potential</u> in the waste. Other factors influence waste composition.

Features of a Sanitary Landfill

- Base lining and leachate collection system
- Controlled placement of waste
- Mechanical compaction of waste
- Grading and leveling of waste
- Application of cover soil
- Fire control
- Control over scavenging
- Vector control

Base Lining and Leachate Collection System

- Retains/controls landfill moisture
- Limits migration of LFG
- Improves gas pressure in landfill
- Improves efficiency of LFG collection system

Lined Disposal Cell, Dominican Republic

Controlled Placement of Waste

- Limits time of atmospheric exposure
- Limits exposure to scavengers and vectors
- Decreases specific surface of waste (S.S. of uncontrolled waste piles 0.4-0.5 ft²/ft³, compared to 0.1 to 0.15 ft²/ft³ for continuous cell operation)

Continuous Cell Landfill, Morocco

Continuous Cell Disposal, Ukraine

Uncontrolled Waste Site, Egypt

GEO CHEM

Loosely Placed Waste, Egypt

Loosely Placed, Thin Lift of Waste Pakistan

CHEM

Loosely Placed Waste, Dominican Republic

HYDRO GEO CHEM

Mechanical Compaction

- Increases density of degradable mass
- Increases LFG pressures by decreasing void space and effective air porosity
- Decreases air permeability (particularly vertical permeability)

Landfill Compactor, Ukraine

Application of Cover Soil

- Limits the depth of oxidation in the waste
- Provides a barrier to LFG ventilation
- Provides a barrier to scavengers and vectors
- Improves efficiency of LFG collection system

Aerobic Degradation System Within a Soil Cover

Placement of Cover Soil, Egypt

Partial Cover at Egyptian Landfill

Control of Landfill Fires

Issues with landfill fires

- Consume landfill gas
- Reduce degradable fraction of waste (reduction in L₀)
- Introduce O₂ into landfill (reduction in k)
- Remove moisture from landfill (reduction in k)
- Generate smoke, CO, other toxins

Landfill Fire at a Managed Dump, Ukraine

Landfill Fire at Managed Dump, Egypt

HYDRO

Fire Vents in Cover Soil, Egypt

Effect of Landfill Fire on Gas Pressures

Location	Average difference between atmospheric and subsurface pressure (kpa)	Average Temperature (deg C)
P1-A	-0.0575	21.7
P1-B	-0.0717	21.7
P2-A	-0.080	19.9
P2-B	0.0276	19.9
P3-A	-0.0517	21.1
Р3-В	-0.0631	20.7
P4-A	-0.0855	19.6
P5-A	0.0114	29.1
P5-B	-0.0917	29.1

Control of Scavengers and Vectors

- Minimizes disturbance of waste
- Minimizes the separation of waste
- Maintains degradable carbon in waste

Seabirds, Egypt

Wild Dogs, Egypt

Goats at Egyptian Landfill

Cattle Feeding, Morocco

Waste Degradation Products

Aerobic (oxidation potential >-330 mV)

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + biomass + heat$$

1kg 0.64kg 0.88kg 0.34kg 0.40kg 9300kJ

Anaerobic (oxidation potential <-330 mV)

$$C_6H_{12}O_6 \rightarrow CH_4 + CO_2 + biomass + heat$$

1kg 0.25kg 0.69kg 0.056kg 632kJ

Landfill Gas Generation Life Cycle

Generalized phases in the generation of landfill gases (I = initial adjustment, II = transition phase, III = acid phase, IV = methane fermentation, and V = maturation phase).

Highly Oxidized Waste

Characteristics of Oxidized Waste, Ukraine

Sample Number	Depth (m)	Water (%)	Ash (%)	Organic Matter (%)	Degradable Carbon (%)
1	4.5	29.3	87.5	12.5	4.7
2	7.5	35.0	90.5	9.5	3.6
3	10.5	24.7	87.9	12.1	4.5
4	6.0	38.3	83.2	16.8	6.3
5	6.5	26.7	84.7	15.3	5.8
6	6.5	42.3	81.4	18.6	7.0
7	6.0	37.3	83.9	16.1	6.0

Estimating Landfill Gas Generation

Three Approaches for Preliminary Gas Generation Potential Evaluation

- Theoretical Gas Yield Methodology
- IPCC Default Methodology
- First Order Kinetics Methodology

Theoretical Gas Yield Methodology

Simplest method for estimating methane emissions from a landfill. Assumes that all potential methane generation is released from waste in the year of disposal.

EPA rule of thumb: 200 ft³ of LFG/ton of waste in place.

IPCC Default Methodology

$$Q = [(M_T)(LF_f)(MCF)(DOC)(DOC_F)(F)(4/3) - R] \times (1 - OX)$$

 M_T =Total waste generated

LF_f=Fraction of waste disposed of at landfill

MCF=Methane Correction Factor

DOC=Degradable Organic Carbon

DOC_F=Fraction DOC dissimilated

 $F=Fraction of CH_4 in LFG (0.5)$

R=Recovered CH₄

OX=Oxidation Factor

IPCC Methane Correction Factors

Sanitary or Managed Landfill MCF=1.0

Open Dump (>5m waste) MCF=0.8

Open Dump (<5m waste) MCF=0.4

Default (uncategorized LF)
MCF=0.6

Theoretical First Order Kinetics Methodology

EPA LandGem Model (first-order decay equation)

$$Q = 2kL_0 \sum_{i=1}^{n} M_i e^{-kt_i}$$

K: Decay rate. Function of moisture content, availability of microbial nutrients, pH, Temperature

L_o: Methane generation potential. Function of cellulose content.

EPA Suggested Values for k and L₀

Variable	Range	Wet Climate	Medium Climate	
L _o (M³/Mg)	140-180	140-180	140-180	140-180
K (1/yr)	0.003-0.4	0.1-0.35	0.05-0.15	0.02-0.10

Values used for regulatory compliance in the United States

- Clean Air Act
 - $L_0 = 170 \text{ m}^3/\text{Mg}$
 - k = 0.05 1/yr
- AP-42 (NMOC emissions estimates)
 - $L_0 = 100 \text{ m}^3/\text{Mg}$
 - k = 0.04 1/yr

Baro-Pneumatic Method for Estimating LFG Generation Rate

- Collect pressure and flow data from the landfill
- Determine porosity and horizontal permeability from pump test data
- Determine vertical permeability by comparison of landfill pressures with atmospheric pressures using Darcy's Law/Continuity Equation
- Determine gas generation using standard principles of gas flow, comparing transformed landfill pressures to atmospheric pressure
- Numerically analyze age/gas generation data to calibrate first-order decay constants

Pressure and Flow Data

Pressure and Flow Data

Basic Screening Criteria

- Minimum of one million tons of waste in place
- Landfill is actively receiving waste, or has been closed for no more than a few years
- Landfill depth of at least 30 feet
- Sanitary landfill or managed dump operating practices

Should also consider climate, waste type, and waste condition.

Contact Information

James Peck, P.E.

Vice President of Engineering

Hydro Geo Chem, Inc.

6340 E. Thomas Road, #224

Scottsdale, Arizona 85251 USA

Tel: (480) 421-1501

Fax: (480) 425-8794

Email: jamesp@hgcinc.com

